Geometry 7.3

Identify similar triangles using the AA, SAS, and SSS

Use similar triangles to solve problems

Third angle theorem SSS SAS (included angle) AA proportion

Works only for triangles

Postulate 7.1 Angle-Angle (AA) Similarity

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

Example If $\angle A \cong \angle F$ and $\angle B \cong \angle G$, then $\triangle ABC \sim \triangle FGH$.

C B F G

Remember: angle sum must be 180

Example 1 Use the AA Similarity Postulate

4

Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.

a.

yes

MA GRAJALA

AA

b.

DXRS - DTWS

AA

GuidedPractice

P SIPQ~AZJK r^{-1}

1B.

Theorems Points on Perpendicular Bisectors

7.2 Side-Side-Side (SSS) Similarity

If the corresponding side lengths of two triangles are proportional, then the triangles are similar.

Example If
$$\frac{JK}{MP} = \frac{KL}{PQ} = \frac{LJ}{QM}$$
, then

7.3 Side-Angle-Side (SAS) Similarity

If the lengths of two sides of one triangle are proportional to the lengths of two corresponding sides of another triangle and the included angles are congruent, then the triangles are similar.

Example If
$$\frac{RS}{XY} = \frac{ST}{YZ}$$
 and $\angle S \cong \angle Y$, then $\triangle RST \sim \triangle XYZ$.

All sets of sides must be proportional

2 pairs of sides and INCLUDED angle

Example 2 Use the SSS and SAS Similarity Theorems

Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.

DPQR~DSTR SAS

b.

GuidedPractice

2A.

16 8 19 1/3 1/3

2B.

We have angles J and F congruent. What else do we need?

3. If $\triangle JKL$ and $\triangle FGH$ are two triangles such that $\angle J \cong \angle F$, which of the following would be difficient to prove that the triangles are similar?

 $\mathbf{F} \quad \frac{KL}{GH} = \frac{JL}{FN}$

 $G \frac{JL}{JK} = \frac{FH}{FG}$

H TK KL

Theorem 7.4 Properties of Similarity

Reflexive Property of Similarity $\triangle ABC \sim \triangle ABC$

Symmetric Property of Similarity If $\triangle ABC \sim \triangle DEF$, then $\triangle DEF \sim \triangle ABC$. Transitive Property of Similarity If $\triangle ABC \sim \triangle DEF$, and $\triangle DEF \sim \triangle XYZ$,

then $\triangle ABC \sim \triangle XYZ$.

Example 4 Parts of Similar Triangles

Draw separately...
Are they similar?
Proportion...

44

Find BE and AD.

7.5

• GuidedPractice

Find each measure.

4A. QP and MP

7.3 9-230 46-56

4B. WR and RT

Draw 2 separate triangles if overlap