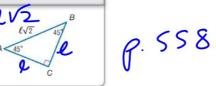
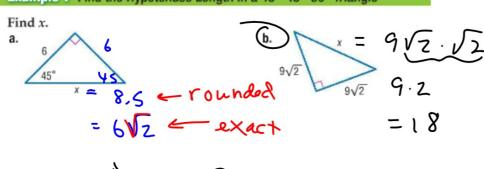
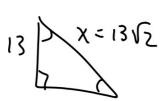

Geometry 8.3
Use the properties of 45-45-90 triangles
Use the properties of 30-60-90 triangles

Quiz 8.1-8.2 Tues.

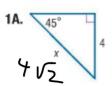
isosceles isosceles right triangle 45-45-90 equilateral triangle 30-60-90 triangle special right triangle rationalizing the denominator

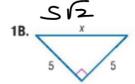



Theorem 8.8 45°-45°-90° Triangle Theorem


In a 45°-45°-90° triangle, the legs ℓ are congruent and the length of the hypotenuse h is $\sqrt{2}$ times the length of a leg. **Symbols** In a 45°-45°-90° triangle, $\ell=\ell$ and $\hbar=\ell\sqrt{2}$.

Why? P. T.

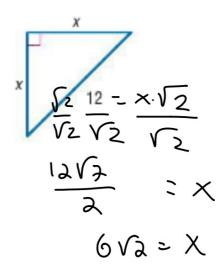

Example 1 Find the Hypotenuse Length in a 45°-45°-90° Triangle



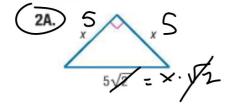
GuidedPractice

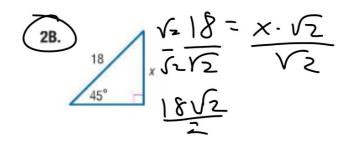
Find x.

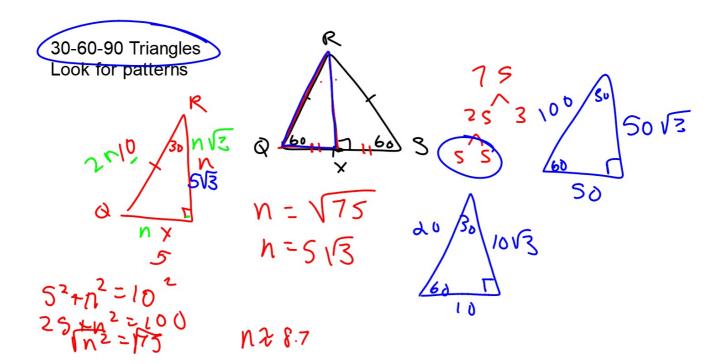
Rationalize the $\frac{12=x\sqrt{2}}{\sqrt{2}} \quad \text{denom}$ $\frac{12}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} = \frac{5}{4}$ $\frac{12\sqrt{2}}{\sqrt{2}} = x$ $\frac{12\sqrt{2}}{\sqrt{2}} = 5\sqrt{2}$ $\frac{12\sqrt{2}}{\sqrt{2}} = 6\sqrt{2}$


Example 2 Find the Leg Lengths in a 45°-45°-90° Triangle

Find x.


The legs of this right triangle have the same measure, x, so it is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. Use Theorem 8.8 to find x.


ReviewVocabulary

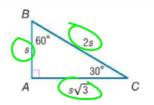

rationalizing the denominator a method used to eliminate radicals from the denominator of a fraction

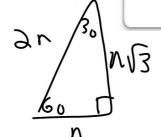
GuidedPractice

Started out as equilateral

StudyTip

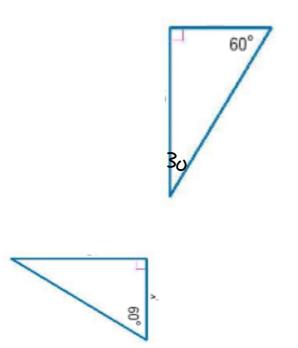
Use Ratios The lengths of the sides of a $30^{\circ}\text{-}60^{\circ}\text{-}90^{\circ}$ triangle are in a ratio of 1 to $\sqrt{3}$ to 2 or 1: $\sqrt{3}$:2.

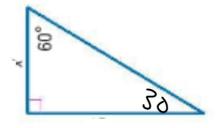

This algebraic proof verifies the following theorem.

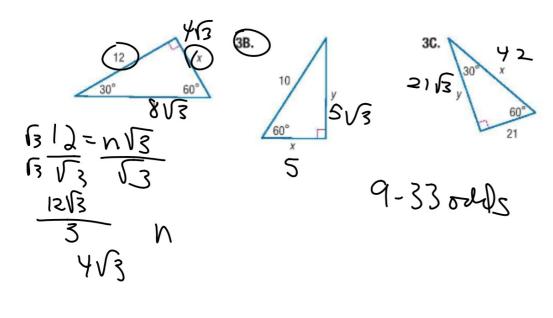


Theorem 8.9 30°-60°-90° Triangle Theorem

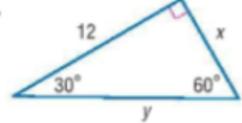
In a 30°-60°-90° triangle, the length of the hypotenuse h is 2 times the length of the shorter leg s, and the length of the longer leg ℓ is $\sqrt{3}$ times the length of the shorter leg.


Symbols In a 30°-60°-90° triangle, h = 2s and $\ell = s\sqrt{3}$.

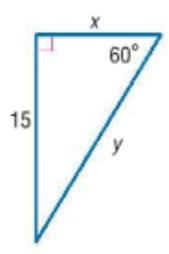




Label each angle Which side is largest (always)? Smallest? Medium?



GuidadDractica



Find x and y.

3A.

Find x and y.

