```
Geometry 10.6
Find measures of angles formed by lines intersecting: ...inside the circle ... outside the circle
```

tangent line line touches secant line intersect 2x hula hoops & meter sticks

Circle + 2 intersecting lines:

Not a central angle... But they are vertical angles!

Theorem 10.12

Words If two secants or chords intersect in the interior of a circle, then the measure of an angle formed is one half the *sum* of the measure of the arcs intercepted by the angle

and its vertical angle.

Example $m \angle 1 = \frac{1}{2}(m\widehat{AB} + m\widehat{CD})$ and $m \angle 2 = \frac{1}{2}(m\widehat{DA} + m\widehat{BC})$

 $=\frac{1}{2}\left(\widehat{AB}+\widehat{CO}\right)$

Example 1 Use Intersec

Find x.

angle =
$$\frac{1}{2}$$
 (Sum)
 $x = \frac{1}{2}$ (130 + 84)
 $x = 107$

b.
$$X = \frac{1}{2}$$
 (143+75)
 $Y = 109$

Which angle is x?

GuidedPractice

1B.

$$X = \frac{1}{2} \left(\right)$$

You will prove Theorem 10.13 in Exercise 33.

GuidedPractice

2A. Find $m\widehat{JLK}$.

ا ه ا

2B. Find $m \angle RQS$ if $m\widehat{QTS} = 238$.

Intersection outside the circle...turns into 1/2 the difference of

rem 10.14

Words If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs.

Examples

Two Secants

$$m \angle A = \frac{1}{2} (m\widehat{DE} - m\widehat{BC})$$

Secant-Tangent

$$m \angle A = \frac{1}{2} (m\overrightarrow{DC} - m\overrightarrow{BC})$$

Two Tangents

$$m\angle A = \frac{1}{2}(m\widehat{DE} - m\widehat{BC})$$
 $m\angle A = \frac{1}{2}(m\widehat{DC} - m\widehat{BC})$ $m\angle A = \frac{1}{2}(m\widehat{BDC} - m\widehat{BC})$

► **Guided**Practice

$$X = \frac{1}{2} \left(179 - 71 \right)$$

$$68 = \frac{1}{2}(224 - n)$$
 $68 = \frac{1}{2}(224 - n)$
 $-44 = -\frac{1}{2}n$
 $N = f_{e}$

• GuidedPractice

4. Find the value of *x*.

Vertex of Angle	Model(s)	Angle Measure
on the circle	1 x°	one half the measure of the intercepted arc $m \angle 1 = \frac{1}{2}x$
inside the circle	x° y°	one half the measure of the sum of the intercepted arc $m \angle 1 = \frac{1}{2}(x + y)$
outside the circle	y°	one half the measure of the difference of the intercepted arcs $m \angle 1 = \frac{1}{2}(x - y)$
		stupid Kroon trick (?)

WB 10.6