Geometry 13.2

Use permutations with probability

Use combinations with probability

outcome
sample space
factorial (!)
permutation
combination
probability

Yesterday's ET :(Will go over it today

KeyConcept Factorial

Words The factorial of a positive integer n, written n!, is the product of the positive integers

less than or equal to n.

Symbols $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$, where 0! = 1

 $GC\cdot 4\cdot 3 = \frac{1}{12}$

EMC from Mon.

What is the question?

 $\frac{1}{6} \cdot \frac{1}{5} = \frac{1}{30}$

How to interpret the question...

$$\frac{20^{\circ} 4}{20^{\circ} 19^{\circ} 18^{\circ} 17} = \frac{1}{116,280}$$
 $\frac{5}{20} \frac{3}{19} \frac{19}{18} \frac{17}{17} = \frac{1}{116,280}$
 $\frac{30}{20} \frac{19}{19} \frac{18}{17} = \frac{1}{4845}$

Example 2 Probability and $_nP_r$

A class is divided into teams each made up of 15 students. Each team is directed to select team members to be officers. If Sam, Valencia, and Deshane are on a team, and the positions are decided at random, what is the probability that they are selected as president, vice president, and secretary, respectively?

Number of arrangements vs probability

palomino $\frac{1}{20,160}$ international 13!

mathematics $\frac{1}{21,21,21}$ $\frac{3}{20,160}$ $\frac{1}{31,211,10}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{1}{31,211,10}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{1}{31,211,10}$ $\frac{3}{2}$ $\frac{3}{$

5.4.3.2.1 120

1. ×. 4. 3. 2-1

Is it a different arrangement? 1*4*3*2*1 Why?

Circular (n-1)

Quiz 13.1-13.2 Wed. This is your time to ask for help!

WB 13.2 Sk. Pr.

