Algebra 2 3.6
Multiply matrices
Use the properties of matrix multiplication

 The table shows the scoring summary for Lisa Leslie, the WNBA's all-time scoring leader, during her highest scoring seasons. Her total baskets can be summarized

	Lisa Leslie Regular Season Scoring						
	Туре	2005	2006	2008	2009		
2 · 3 ·	Field Goal	197	249	184	143		
3•	3-Point Field Goal	7	8	4	1		
1•	Free Throw	102	158	117	65		
Source: WNBA 517 686							

How would you calculate her point total for each season?

				_			
	Lisa Leslie Regular Season Scoring						
2pt	Туре	2005	2006	2008	2009		
_'`]	Field Goal	197	249	184	143		
3pt	3-Point Field Goal	7	8	4	1		
SP.	Free Throw	102	158	117	65		
1 ptsource: WNBA							

dimensions have to work out...

dimensions must work out...

Example 1 Dimensions of Matrix Products

Determine whether each matrix product is defined. If so, state the dimensions of the product.

a. A_3 and $A_{4\times 2}$

b. A_5 and $B_{3\times 4}$

whiteboards

Determine whether each matrix product is defined. If so, state the dimensions of the product.

2.
$$C_5$$
 4 C_5 **4** C_5 **4**

3.
$$E_{8\times 6}$$
 $E_{6}\times 19$

GuidedPractice

1A. $A_{4\times 6}$ and $B_{6\times 2}$

1B. $A_{3\times 2}$ and $B_{3\times 2}$

Find XY if
$$X = \begin{bmatrix} 6 & -3 \\ -10 & -2 \end{bmatrix}$$
 and $Y = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$

$$-10 - 4 + -2 \cdot 3$$

$$40 + -6$$

$$1 \times 10^{-4} \times 10^{-4}$$

Matrix Multiplication

(My Darling Clementine)

Row by column, row by column, Multiply them line by line. Add them up to form a matrix, Now you're doing it just fine!

2. Find
$$UV$$
 if $U = \begin{bmatrix} 5 & 9 \\ -3 & -2 \end{bmatrix}$ and $V = \begin{bmatrix} 2 & -1 \\ 6 & -5 \end{bmatrix}$. $= \begin{bmatrix} 49 & 59 \\ -18 & 13 \end{bmatrix}$

whiteboards

Find each product, if possible.

4.
$$\begin{bmatrix} 2 & 1 \\ 7 & -5 \end{bmatrix} \cdot \begin{bmatrix} -6 & 3 \\ -2 & -4 \end{bmatrix}$$

Real-World Example 3 Multiply Matrices

SWIM MEET At a particular swim meet, 7 points were awarded for each first-place finish, 4 points for second, and 2 points for third. Find the total number of points for each school. Which school won the meet?

School	First Place	Second Place	Third Place
Central	4	7	3
Franklin	8	9	1
Hayes	10	5	3
Lincoln	3	3	6

7 4 8. \[\begin{pmatrix} -8 & 7 & 4 \ -5 & -3 & 8 \end{pmatrix} \cdot \begin{pmatrix} 10 & 6 \ 8 & 4 \end{pmatrix} \quad \text{P} \\ 2 \times 3 \cdot 2 \times 2 \times 2 \times 3 \cdot 2 \times 2

- 3.6 15-290 55-57 all