Algebra 2

Solve quadratic equations by graphing
Estimate solutions of quadratic equations by graphing
quadratic function
quadratic equation
standard form
zero(s)
root(s)
no solution
double root

whiteboards?

Toothpick & curve

The zeros of the function are the x-intercepts of its graph.

Quadratic Function

$$f(x) = x^2 - x - 6$$

$$f(-2) = (-2)^2 - (-2) - 6$$
 or 0
 $f(3) = 3^2 - 3 - 6$ or 0

-2 and 3 are zeros of the function.

Graph of Function

Use the related graph of each equation to determine its solutions.

(x-intercepts)

1.
$$x^2 + 2x + 3 = 0$$

2.
$$x^2 - 3x - 10 = 0$$

3.
$$-x^2 - 8x - 16 = 0$$

Example 1 Two Real Solutions

Solve $x^2 - 3x - 4 = 0$ by graphing.

Find x-intercepts of the graph: How do you KNOW?

Whiteboards:

GuidedPractice

Solve each equation by graphing.

1A.
$$x^2 + 2x - 15 = 0$$

Start with standard form...

1B.
$$x^2 - 8x = -12$$

x2-8x+4=0

Example 2 One Real Solution

Whiteboards:

GuidedPractice

Solve each equation by graphing. **2A.** $x^2 + 5 = -8x - 11$

2A.
$$x^2 + 5 = -8x - 11$$

8.
$$x^2 - 6x + 4 = -8$$

9.
$$9 - x^2 = 12$$

