Algebra 2 4.6 Solve quadratic equa

Solve quadratic equations by using the quadratic formula Use the discriminant to determine the number and type of roots for a quadratic equation

standard form (of a quadratic)

discriminant
quadratic formula
complex number
conjugate pair
irrational number
exact answer
QF song

$$QX^2 + PX + C = 0$$

whiteboards

KeyConcept Quadratic Formula

Words

The solutions of a quadratic equation of the form $ax^2 + bx + c = 0$, where $a \neq 0$, are given by the following formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

$$x^2 + 5x + 6 = 0 \rightarrow x = \frac{-5 \pm \sqrt{5^2 - 4(1)(6)}}{2(1)}$$

QF song!

GuidedPractice

Solve each equation by using the Quadratic Formula.

4A.
$$3x^2 + 5x + 4 = 0$$

4B.
$$x^2 - 4x = -13$$

between the value of the expression under the radical and the roots of the quadratic equation. The expression $b^2 - 4ac$ is called the **discriminant**.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftarrow \text{discriminant}$$

Just the part in RED!

PT

Example 5 Describe Roots

Find the value of the discriminant for each quadratic equation. Then describe the number and type of roots for the equation.

a.
$$7x^2 - 11x + 5 = 0$$

b.
$$x^2 + 22x + 121 = 0$$

$$(-11)^{2}-4.7.5$$

 $121-140$
 $d=-19$

double root

Solw: GuidedPractice

5A. $-5x^2 + 8x - 1 = 0$

discrim. + N.O.R.

5B.
$$-7x + 15x^2 - 4 = 0$$

ConceptSummary Solving Quadratic Equations		
Method	Can be Used	When to Use
graphing	sometimes	Use only if an exact answer is not required. Best used to check the reasonableness of solutions found algebraically.
factoring	sometimes	Use if the constant term is 0 or if the factors are easily determined. Example $x^2 - 7x = 0$
Square Root Property	sometimes	Use for equations in which a perfect square is equal to a constant $(x-5)^2=18$
completing the square	always	Useful for equations of the form $x^2 + bx + c = 0$, where b is even. Example $x^2 + 6x - 14 = 0$
Quadratic Formula	always	Useful when other methods fail or are too tedious. Example $2.3x^2 - 1.8x + 9.7 = 0$

