Algebra 2 7.5 Simplify and evaluate expressions using the properties of logarithms Solve logarithmic equations

logarithm = exponent

product rule quotient rule power^power

 $\frac{3}{4}$

10=100

log, 100 = 2

log=exponent so same rules apply 23

KeyConcept Product Property of Logarithms

Words The logarithm of a product is the sum of the logarithms of its factors.

Symbols For all positive numbers a, b, and x, where $x \ne 1$, $\log_x ab = \log_x a + \log_x b$.

Example $\log_2 [(5)(6)] = \log_2 5 + \log_2 6$

log2(80) = log2(5.6) = log5+log26

Example 3 Power Property of Logarithms

Given $\log_2 5 \approx 2.3219$, approximate the value of $\log_2 25$.

BOGO: log₂2

Write as combination of 2s & 5s Check answer

 $log_2(5.5) = log_35 + log_25$ = 2.3219 + 2.3219 = 4.6438

log₂50 log₃(2.5.5) 1+2.3219+ 2,3219 5.6438

Example 1 Use the Product Property

Use $\log_4 3 \approx 0.7925$ to approximate the value of $\log_4 192$.

How can I write 192? write using factors of: 3 (given) and 4 (base) combine by adding exponents check answer

27 81 12

GuidedPractice

1. Use $\log_4 2 = 0.5$ to approximate the value of $\log_4 32$.

$$log_4(32) = log_4(4.4.2)$$
= 1+1+.5

write using factors of 2 and 4

(base)

GuidedPractice

3. Given $\log_3 7 \approx 1.7712$, approximate the value of $\log_3 49$.

BOGO: log₃3

Write as combination of 3s & 7s (base)

$$\log_3(7.7) = 1.7712 + 1.7712$$

= 3.5424

Log=exp so follow same rules $x^{5/2}$ $\frac{\times^{5}}{\times^{2}}$

KeyConcept Quotient Property of Logarithms

Words The logarithm of a quotient is the difference of the logarithms of the numerator

and the denominator.

Symbols For all positive numbers a, b, and x, where $x \neq 1$,

 $\log_X \frac{\mathbf{a}}{b} = \log_X a - \log_X b.$

Example $\log_2 \frac{5}{6} = \log_2 5 - \log_2 6$

Hint: divide out -1 to solve for log Write in exp form

Real-World Example 2 Quotient Property

SCIENCE The pH of a substance is defined as the concentration of hydrogen ions $[H^+]$ in moles. It is given by the formula $pH=-log_{10}H^+$. Find the amount of hydrogen in a liter of acid rain that has a pH of 4.2.

Note change in formula

Write in exp form

$$(-4.2)$$

 10 = H⁺
 0.000063096
 0.3×10^{-5}

log=exp so follow same rules: $(x^2)^4 = x^3$

Solution West Property of Logarithms

Words The logarithm of a power is the product of the logarithm and the exponent.

Symbols For any real number p, and positive numbers m and b, where $b \neq 1$, $\log_b m^p = p \log_b m$.

Example $\log_2 6^5 = 5 \log_2 6$

hint: exponents mean repeated multiplication

What does it mean if exponents are added?

Example 4 Solve Equations Using Properties of Logarithms

Solve
$$\log_6 \frac{12}{x} + (\log_6 (x^2 - 9)) = 2$$
.
 $\chi = 12$

$$\log_6 x(\chi - 9) = 2$$

$$\log_6 x(\chi - 9) = 2$$

$$\log_6 (\chi^2 - 9 \chi) = 2$$

$$\log_6 (\chi^2 - 9 \chi)$$

4B. $\log_6 x + \log_6 (x + 5) = 2$

$$log_{6} \times (X+5) = 2$$
 $log_{6} \times (X+5) = 2$
 $log_{6} \times (X+6) = 2$

What does it mean if exponents are multiplied?

GuidedPractice

(X3)

=

$$(X^3)^2$$

4A.
$$2 \log_7 x = \log_7 27 + \log_7 3$$

$$ky_{7}(x)^{2} = kg_{7}(27.3)$$

$$2 \log_{10} x = \log_{10} x + \log_{10} 4$$

$$\log_{10} x^{2} = \log_{10} 4x$$

$$x^{2} = 4x$$

$$x^{2} - 4x = 0$$

$$x(x-4) = 0$$