$$8^{x} = 128$$

$$(2^{3})^{x} = (2^{7})$$

$$\frac{3x}{3} = 21$$

$$x = 7$$

$$M_{\rm L} = \log_{10} A - \log_{10} A_0(\delta) = \log_{10} [A/A_0(\delta)],$$

A, Ao, = distance from seismograph, etc.

Example 1 Solve a Logarithmic Equation

Solve
$$\log_{36}(x) = \frac{3}{2}$$
.

$$arguments$$

$$arguments$$

$$must be (36) ()()()()$$

Exponential form domain x>0 Why??? always verify solutions

Solve each equation.

1A.
$$\log_9(x) = \frac{3}{2}$$

1A.
$$\log_9[x] = \frac{3}{2}$$

$$9 = x$$

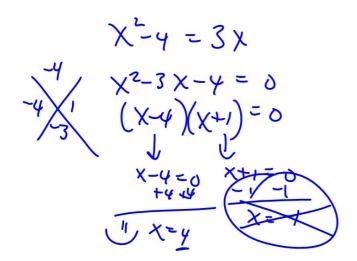
1B. $\log_{16} x = \frac{5}{2}$

KeyConcept Property of Equality for Logarithmic Functions

Symbols If b is a positive number other than 1, then $\log_b x = \log_b y$ if and only

if x = y.

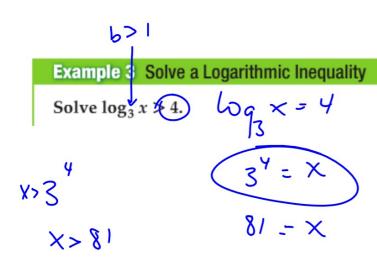
If $\log_5 x = \log_5 8$, then x = 8. If x = 8, then $\log_5 x = \log_5 8$. Example


> → If bases are the same and exponents (logs) are equal then numbers (antilogs) are the same.

> > (Remember: Log is code for exponent)

Are bases equal?
Are the numbers equal?
Then the exponents are equal!

Standardized Test Example 2 Solve a Logarithmic Equation


Solve
$$\log_2 (x^2 - 4) = \log_2 3x$$
.
A -2 B -1 C 2 D 4

Might be extraneous solutions: argument must be positive (Why?)

GuidedPractice10

- **2.** Solve $\log_3 (x^2 15) = \log_3 6x$ **F** −3
- Log3 (5+x) 5+-3 H 5 15

My number...their number

**Argument must be positive.

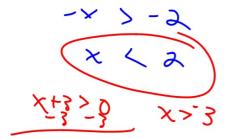
Is my number (x) bigger or smaller than 3^4 ?

How can I tell?

GuidedPractice

Is my number bigger or smaller than 4³?

Solve each inequality.


3A.
$$\log_4 x = 3$$

 $4^3 = 64$
 $x \ge 64$

Is my number bigger or smaller than 2⁴?
Reminder: argument must be positive

Do they have the same base?

Example 4 Solve Inequalities with Logarithms on Each Side

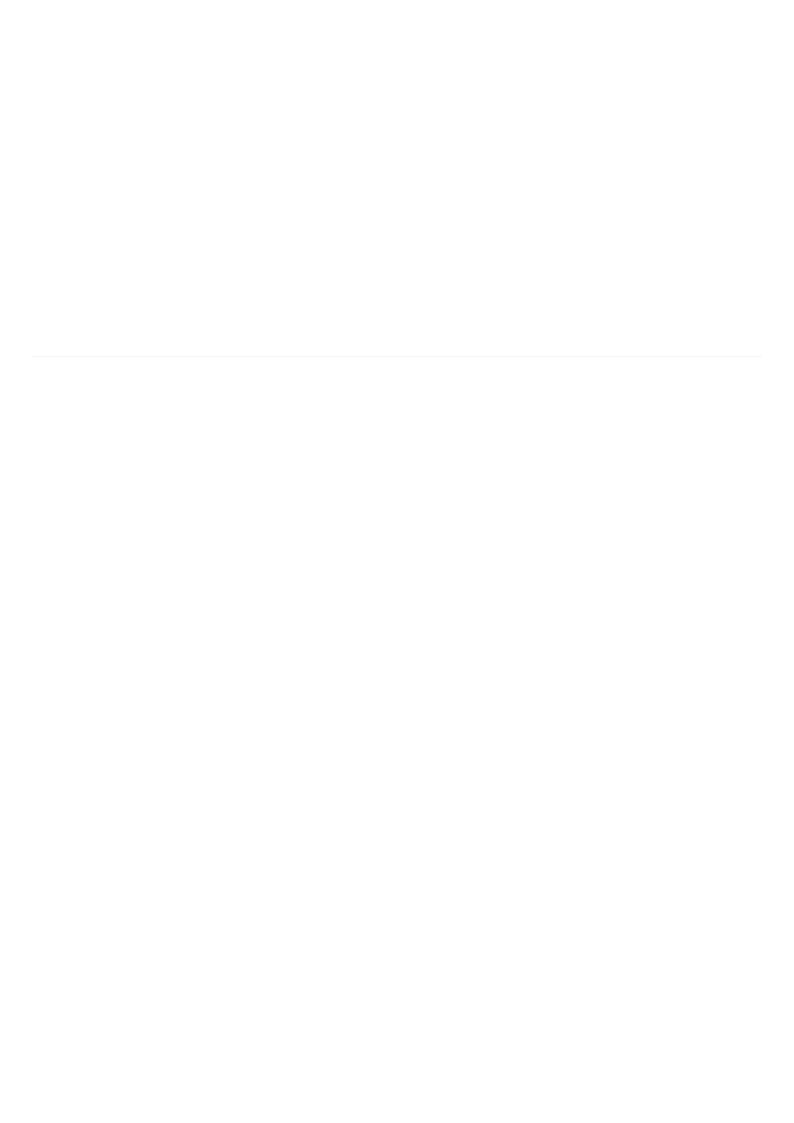
Solve
$$\log_4 (x+3) > \log_4 (2x+1)$$
. $2 \times 4 > 0$

GuidedPractice $x \rightarrow y \rightarrow 0$ 4. Solve $\log(2x+1) \le \log(x+4)$ Check your solution. $\frac{1}{2} < x \le 3$

Guided Practice

4. Solve
$$\log (2x+1) \le \log (x+4)$$
 Characteristics

$$\frac{2}{2} \times 4 = 1 \le x + 4$$


$$-x - 1 = -x - 1$$

$$x > -\frac{1}{2} = \frac{1}{2}$$

$$2 \times 4 = 1 > 0$$

$$\frac{2}{2} \times$$

