Algebra 2 5.5

Factor polynomials
Solve polynomial equations by factoring*

factor (expression)
solve (equation)
zero product property
GCF*
perfect square trinomial*
difference of 2 squares*
sum of 2 cubes
difference of 2 cubes
prime polynomial
quadratic form

New Y

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

X

A

* Ch. 4 (4.3)

Always look for GCF first...

2* 3y

Example 1 Sum and Difference of Cubes

Factor each polynomial. If the polynomial cannot be factored, write prime.

$$\frac{a \cdot \frac{16x^{4} + 54xy^{3}}{2x}}{2x} = \frac{2}{2x} \left(\frac{8x^{3} + 27y^{3}}{2x} \right)$$

$$\frac{2}{2x} \left(\frac{8x^{3} + 27y^{3}}{2x} \right)$$

New?

KeyConcept Sum and Difference of Cu	ubes
Factoring Technique	General Case
Sum of Two Cubes	$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
Difference of Two Cubes	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

0.342

Wedding song

4.3 Solve by factoring

Example 2 Factor the GCF

Solve
$$\underline{16x^2} + \underline{8x} = 0$$
.

$$8x(2x+1)=0$$

$$8x=0 2x+1=0$$

$$8x=0 2x=-1$$

$$(x-8)(x+8)=0$$

 $(x-8)(x+8)=0$
 $x-8=0$ $x+8=0$

GuidedPractice

Look for GCF first Factor vs solve?

b.
$$8y^3 + 5x^3$$
 Prime ay

1B.
$$-\frac{54w^4}{-2\omega} - \frac{250wz^3}{-2\omega}$$
 $-2\omega \left(27\omega^3 + 125z^2\right)$
 $\frac{1}{3}\omega + 5z$
 $-2\omega \left(3\omega + 5z\right) \left(9\omega^2 - 15\omega z^3\right)$

ConceptSummary Fa	actoring Techniques			
Number of Terms	Factoring Technique	General Case (2.3		
any number	Greatest Common Factor (GCF) $4a^3b^2 - 8ab = 4ab(a^2b - 2)$			
two	Difference of Two Squares Sum of Two Cubes Difference of Two Cubes	$a^{2} - b^{2} = (a + b)(a - b)$ $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$		
three	Perfect Square Trinomials	$a^{2} + 2ab + b^{2} = (a + b)^{2}$ $a^{2} - 2ab + b^{2} = (a - b)^{2}$		
	General Trinomials factor by grouping	$acx^{2} + (ad + bc)x + bd$ $= (ax + b)(cx + d)$		
four or more Grouping		ax + bx + ay + by $= x(a + b) + y(a + b)$ $= (a + b)(x + y)$		

Example 2 Factoring by Grouping

Factor each polynomial. If the polynomial cannot be factored, write prime.

$$8ax + 4bx + 4cx + 6ay + 3by + 3cy$$

1. GCF

2. special patterns

Guided Practice

$$24 \left(\frac{30ax - 24bx + 6cx}{6x} + \frac{5ay^2 + 4by^2 - cy^2}{9^2} \right)$$
 $6 \times (5x - 4b + c) - y^2 - (5x - 4b + c)$
 $(5a - 4b + c)(6x - y^2)$

Factor completely...

Example 3 Combine Cubes and Squares

Factor each polynomial. If the polynomial cannot be factored, write prime.

GCF x-factor difference of squares difference of cubes factor by grouping

When to stop?

$$b\left(\frac{a^{3}x^{2}-6a^{3}x+9a^{3}}{a^{3}}\right)\frac{b^{3}x^{2}+6b^{3}x-9b^{3}}{b^{3}}$$

$$A^{3}\left(x^{2}-bx+9\right)+b^{3}\left(x^{2}-bx+9\right)$$

$$\left(x^{2}-bx+9\right)\left(a^{3}-b^{3}\right)$$

$$\left(x^{2}-bx+9\right)\left(a^{3}-b^{3}\right)$$

$$\left(x^{2}-bx+9\right)\left(a^{3}-b^{3}\right)$$

$$\left(x^{2}-bx+9\right)\left(a^{3}-b^{3}\right)$$

tough...

Words

An expression that is in quadratic form can be written as $au^2 + bu + c$ for any numbers a, b, and c, $a \ne 0$, where u is some expression in x. The expression $au^2 + bu + c$ is called the quadratic form of the original expression.

•

StudyTip

Quadratic Form When writing a polynomial in quadratic form, choose the expression equal to *u* by examining the terms with variables. Pay special attention to the exponents in those terms. Not every polynomial can be written in quadratic form.

Example 5 Quadratic Form

Write each expression in quadratic form, if possible.

a.
$$150n^8 + 40n^4 - 15$$

2.3.5.5.n.n.n.n.n.n.n 2.2.2.5.n.n.n.n Let u=

b.
$$y^8 + 12y^3 + 8$$

2.3.3.x.x.x.x

Example 6 Solve Equations in Quadratic Form

Solve $18x^4 - 21x^2 + 3 = 0$.

$$18x^4 - 21x^2 + 3 = 0$$
 Original equation
$$2(3x^2)^2 - 7(3x^2) + 3 = 0$$

$$2(3x^2)^2 = 18x^4$$

$$2u^2 - 7u + 3 = 0$$
 Let $u = 3x^2$.

$$(2u-1)(u-3)=0$$
 Factor.
 $u=\frac{1}{2}$ or $u=3$ Zero Product Property

$$3x^2 = \frac{1}{2}$$
 $3x^2 = 3$ Replace u with $3x^2$.

$$x = \pm \frac{\sqrt{6}}{6}$$
 $x = \pm 1$ Take the square root.

The solutions of the equation are 1, -1, $\frac{\sqrt{6}}{6}$, and $-\frac{\sqrt{6}}{6}$.

GuidedPractice

6A. $4x^4 - 8x^2 + 3 = 0$

2.2.x.x.x.x 2.2.2.x.x 2.2.2.x.x.x.x 2.5.x.x

6B. $8x^4 + 10x^2 - 12 = 0$