Algebra 2 Review Ch. 7

Quiz 7.7-7.8

Test Tues. Ch. 7

whiteboards?

Solve $3e^{5x} + 1 = 10$. Round to the nearest ten-thousandth.

$$\frac{3e^{x}}{3} = \frac{9}{3}$$
 $x = 0.2197$ $\ln e^{5x} = \frac{1}{3}$ $5x(1) = 1.0986$

A certain culture of bacteria will grow from 250 to 2000 bacteria in 1.5 hours. Find the constant k for the growth formula. Use $y = ae^{kt}$.

$$17 = 1.3863$$
 $\frac{2000}{250} = \frac{250}{250} = \frac{1.3863}{250} = \frac{250}{250} = \frac{1.3863}{250} = \frac{250}{250} = \frac{1.3863}{250} = \frac{250}{250} = \frac{1.3863}{250} = \frac{1.$

- 24. BACTERIA A bacteria population started with 5000 bacteria. After 8 hours there were 28,000 in the sample.
 - a. Write an exponential function that could be used to model the number of bacteria after x hours if the number of bacteria changes at the same rate.
 - b. How many bacteria can be expected in the sample after 32 hours?

7_9 Solving Exponential Equations and Inequalities

Solve each equation or inequality.

18.
$$16^{x} = \frac{1}{64}$$

$$4^{2x} = 4^{-3}$$

$$4^{2x} = 4^{-3}$$

19.
$$3^{4x} = 9^{3x+7}$$

$$3^{4x} = (3^2)^{3x+7}$$

$$4x = 6x + 14$$

$$-6x - 6x$$

$$-2x = 14$$

7-3 Logarithms and Logarithmic Functions

25. Write $\log_2 \frac{1}{16} = -4$ in exponential form.

26. Write $10^2 = 100$ in logarithmic form.

log 100 = 2

Evaluate each expression.

27.
$$\log_4 256 = n$$

28.
$$\log_2 \frac{1}{8} = n$$

$$\begin{cases} N = -3 \\ 2 = -3 \\ 2 = \frac{8}{7} \end{cases}$$

▲ Solving Logarithmic Equations and Inequalities

Solve each equation or inequality.

31.
$$\log_4 x = \frac{3}{2}$$

32.
$$\log_2 \frac{1}{64} = x$$

$$\beta_{x} = \beta_{-r}$$

$$\beta_{x} = \frac{\rho\lambda}{1}$$

33.
$$\log_4(x) < 3$$
 $\times > 0$
 $\times < 4$
 $\times < 64$
 $\times < 64$
 $\times < 64$
 $\times < 64$

35.
$$\log_9(3x-1) = \log_9(4x)$$

$$3X-1=4x$$

$$-3x$$

$$-3x$$

$$X=NS$$

7_1 Graphing Exponential Functions

Graph each function. State the domain and range.

11.
$$f(x) = 3^x$$

12.
$$f(x) = -5(2)^x$$

Solve
$$4^{3x} = 32^{x-1}$$
 for x .

22.
$$9^{x-2} > \left(\frac{1}{81}\right)^{x+2}$$

$$Q^{x-2} > \left(\frac{1}{81}\right)^{x+2}$$

$$Q^{x-2} > Q^{x-2}$$

Use $\log_5 16 \approx 1.7227$ and $\log_5 2 \approx 0.4307$ to approximate $\log_5 32$.

$$69(37) = 0.4307 + 1.7227$$
 (2.16)
 $= 32$

Solve $\log_3 3x + \log_3 4 = \log_3 36$.

Solve $5^{3x} > 7^{x+1}$.