* 8th grade standard

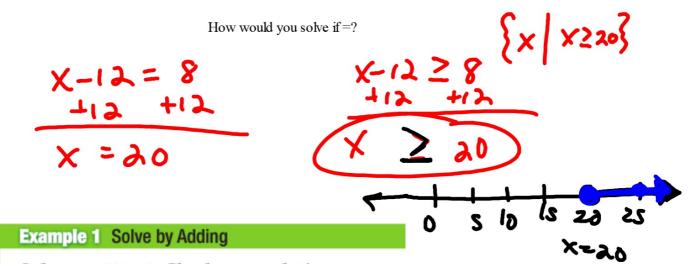
Algebra 1 5.1
Solve linear inequalities by using addition*
Solve linear inequalities by using subtraction*

inequality < > < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\) < \(\)

Vikings scores

KeyConcept Addition Property of Inequalities

Words If the same number is added to each side of a true inequality, the resulting inequality


is also true.

Symbols For all numbers a, b, and c, the following are true.

1. If a > b, then a + c > b + c.

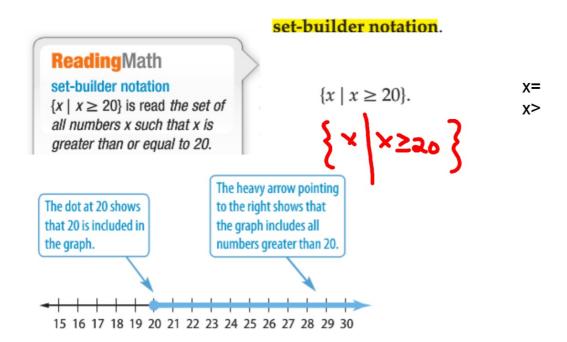
2. If a < b, then a + c < b + c.

This property is also true for \geq and \leq .

Solve $x - 12 \ge 8$. Check your solution.

whiteboards $f(x) = \frac{1}{2}$ Guided Practice

Solve each inequality. Check


1A. 22 > m - 8 1 + 8 + 8 21 > 12 30 > m m is less than 30So is more than m

How to graph <> on a number line?

56 10

triangle puzzle

Smato: do we need this?

Ke Concept Subtraction Property of Inequalities

Symbols

Words
If the same number is subtracted from each side of a true inequality, the resulting inequality is also true.

For all numbers a, b, and c, the following are true.

1. If a > b, then a - c > b - c.

2. If a < b, then a - c < b - c.

This property is also true for \geq and \leq .

How would you solve if = ?

Standardized Test Example 2 Solve by Subtracting

Solve
$$m + 19 > 56$$
.
 $-19 - 19$
 $m > 37$
 $\{m \mid m>37\}$

Whiteboards

GuidedPractice

2. Solve $p + 8 \le 18$.

Example 3 Variables on Each Side

Solve $3a + 6 \le 4a$. Then graph the solution set on a number line.

$$\frac{-3a}{6} \le a$$

$$\begin{cases} a | 6 \le a \\ -3a | -3a \end{cases}$$

$$\begin{cases} a | 6 \le a \\ 6 = a \end{cases}$$

Whiteboards

GuidedPractice

Solve each inequality. Then graph

3A.
$$9n - 1 < 10n$$

3B. $5h \le 12 + 4h$

triangle puzzle (if time)


What are the 3 options?

ConceptSummary Phrases for Inequalities			
<	>	≤	≥
less than fewer than	greater than more than	at most, no more than, less than or equal to	at least, no less than, greater than or equal to

Real-World Example 4 Use an Inequality to Solve a Problem

PETS Felipe needs for the temperature of his leopard gecko's basking spot to be at least 82°F. Currently the basking spot is 62.5°F. How much warmer does the basking spot need to be?

