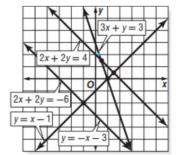
Algebra 1 6.1
Determine the number of solutions to a system of linear equations
Solve systems of linear equations by graphing

linear equation system of equations consistent inconsistent independent dependent

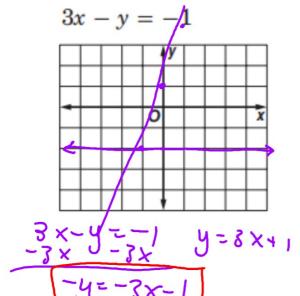
graph matching: equation, table, graph

ConceptSumma	ary Possible Solutions			
Number of Solutions	exactly one	infinite	no solution	
Terminology	consistent and independent	consistent and dependent	inconsistent	
Graph	N X	G x	C) x	

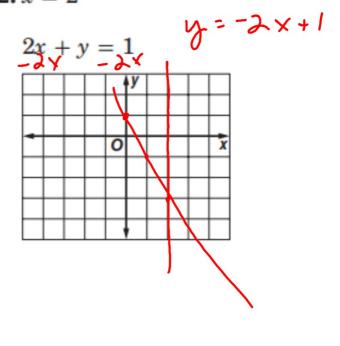
Exercises

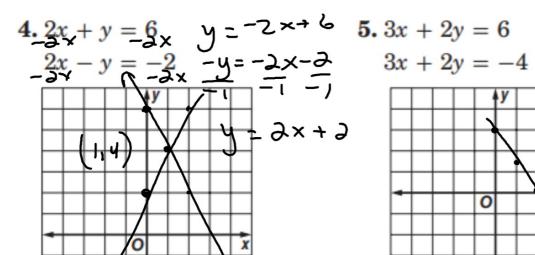

3. y = -x - 32x + 2y = 4

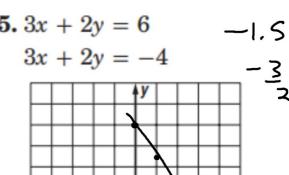
Use the graph at the right to determine whether each system is consistent or inconsistent and if it is independent or dependent.


$$\begin{array}{c|c}
1. y = -x - 3 \\
y = x - 1
\end{array}$$

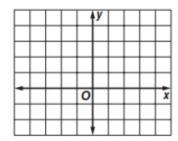
$$\begin{array}{c}
(+ \overline{L}n) \\
(-1, -2)
\end{array}$$

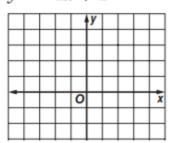

2.
$$2x + 2y = -6$$
 $y = -x - 3$




$$1.y = -2$$

2.
$$x = 2$$




3.
$$y = \frac{1}{2}x$$

$$x + y = 3$$

6.
$$2y = -4x + 4$$

$$y = -2x + 2$$

Duys

- 2. ARCHITECTURE An office building has two elevators. One elevator starts out on the 4th floor, 35 feet above the ground, and is descending at a rate of 2.2 feet per second. The other elevator starts out at ground level and is rising at a rate of 1.7 feet per second. Write a system of equations to represent the situation.
- 3. FITNESS Olivia and her brother William had a bicycle race. Olivia rode at a speed of 20 feet per second while William rode at a speed of 15 feet per second. To be fair, Olivia decided to give William a 150-foot head start. The race ended in a tie. How far away was the finish line from where Olivia started?

$$y = -2.2v + 35$$

$$y = 1.7x$$

$$y =$$