J

Think of 2 numbers with a sum of 10.

Algebra 1 5.6
Graph linear inequalities on the coordinate plane
Solve inequalities by graphing

linear boundary half-plane open closed test point whiteboards

Hint: always us an EQUATION when you graph the boundary.

whiteboards

GuidedPractice Graph each inequality.

1A.
$$y \ge \frac{1}{2}x + 3$$
 $0 > \frac{1}{2} \cdot 0 + 3$
 $0 > 0 + 3$
 $0 > 3$

How is this problem different?

Example 1 Graph an Inequality (< or >)

Locate the boundary (hint: y=)

Graph
$$3x - y \le 2$$
.

 $3 \cdot 6 - 0 < 3$
 $3x \cdot 1y = 3$
 $-3x - 3x + 3$
 $y = 3x - 2$

1B. x - 1 > y

Example 2 Graph an Inequality (≤ or ≥)

Graph $x + 5y \le 10$.

Graph each inequality.

2A. $x - y \le 3$

2B. $2x + 3y \ge 18$

Example 3 Solve Inequalities From Graphs

Use a graph to solve 3x + 5 < 6

Graph y=3x+5

Graph y=6

Where is 3x+5 lower on the graph (smaller y-coord = less) than 6

Use a graph to solve each inequality.

3A.
$$4x - 3 \ge -7$$

