Algebra 1 7.3 Evaluate and rewrite expressions involving rational exponents Solve equations with rational exponents rational inverse operation radical sign square root (8th grade standard) cube root nth root exponential equation whiteboards

Example 2 nth roots

* Simplify. a. $\sqrt[3]{(27)} \div 3$ (27)

$$(?)^3 = 27$$

b.
$$\sqrt[5]{32}$$
 = 32

$$\left(?\right)^{5}=32$$

guess & check

Might be easier to see if written in radical form first...

Simplify.
$$\zeta$$
a. $(125)^{\frac{1}{3}}$ $\sqrt[3]{125}$
 $(?)^{3} = 125$

Groups of 3... (triplets)

Groups of 4 (quads)

GuidedPractice

3A.
$$27^{\frac{1}{3}} = 3$$

$$(?)^3 = 27$$

3B.
$$256^{\frac{1}{4}} - \checkmark$$

$$\frac{1}{xy} \left(xy \right)^{\frac{1}{2}}$$

$$x \sqrt{y} \quad x \cdot (y)^{\frac{1}{2}}$$

$$5x^{\frac{1}{4}} \sqrt{y}$$

*2 different ways...

Example 4 Evaluate $b^{\frac{m}{n}}$ Expressions

Simplify.

a. $64^{\frac{2}{3}}$

b. $36^{\frac{3}{2}}$

*root first

GuidedPractice

4A. $27^{\frac{2}{3}}$

4B. $256^{\frac{5}{4}}$