*8th grade standard

Algebra 1 7.4

Express numbers in scientific notation*

Find products and quotients of numbers in scientific

notation

scientific notation

exponent

standard form

activity: triangle puzzles

whiteboards

KeyConcept Standard Form to Scientific Notation

- Step 1 Move the decimal point until it is to the right of the first nonzero digit. The result is a real number a.
- **Step 2** Note the number of places *n* and the direction that you moved the decimal point.
- Step 3 If the decimal point is moved left, write the number as $a \times 10^n$.

 If the decimal point is moved right, write the number as $a \times 10^{-n}$.
- Step 4 Remove the unnecessary zeros.

Make it a 1-digit number by moving decimal point (between 1 and 9)
How for did you move it?

(Remember, every place value is x10)

Did it get bigger or smaller? (we have to keep things equal)

Example 1 Standard Form to Scientific Notation

Express each number in scientific notation.

a. 201,000,000

b. 0.000051

GuidedPractice

1A. 68.700.000.000

6.87 × 10

6.87×10

u

1B. 0.0000725

7.25 ×10

7. 25 × 10 -5

What does 10² mean?

10.10 100

WatchOut!

Negative Signs Be careful about the placement of negative signs. A negative sign in the exponent means that the number is between 0 and 1. A negative sign before the number means that it is less than 0.

KeyConcept Scientific Notation to Standard Form

Step 1 In $a \times 10^n$, note whether n > 0 or n < 0.

Step 2 If n > 0, move the decimal point n places right. If n < 0, move the decimal point -n places left.

Step 3 Insert zeros, decimal point, and commas as needed for place value.

ſſ___

x100...x10...etc. makes a number bigger (move decimal pt to right)

Example 2 Scientific Notation to Standard Form

Express each number in standard form.

a. 6.32×10^9

6,3,20,000,000

"times a decimal" = gets smaller (how much smaller?)

b.
$$4 \times 10^{-7}$$

3,2,0,5000

2B. 9.03×10^{25}

.0000903

Commutative property of multiplication

Example 3 Multiply with Scientific Notation

Evaluate $(3.5 \times 10^{-3})(7 \times 10^{5})$, Express the result in both scientific notation and standard form. $(3.5)(7)(0^{-3})(10^{5})$ Answer in sci notation and/or standard form Follow directions

S7

Answer in sci notation and/or standard form Follow directions

· GuidedPractice

Evaluate each product. Express the results in both scientific notation and standard form.

3A.
$$(6.5 \times 10^{12})(8.7 \times 10^{-15})$$

$$(6.5)(8.7)(0^{12})(0^{$$

Grouping

Example 4 Divide with Scientific Notation

Evaluate $\frac{3.066 \times 10^8}{7.3 \times 10^3}$. Express the result in both scientific notation and standard form.

WB74 Prai.

Evaluate each quotient. Express the results in both scientific notation and standard form.

4A.
$$\frac{2.3958 \times 10^3}{1.98 \times 10^8}$$

4B.
$$\frac{1.305 \times 10^3}{1.45 \times 10^{-4}}$$

Real-World Example 5 Use Scientific Notation

MUSIC In the United States, a CD reaches gold status once 500 thousand copies are sold. A CD reaches platinum status once 1 million or more copies are sold.

a. Express the number of copies of CDs that need to be sold to reach each status in standard notation.

Real-WorldLink

The platinum award was created in 1976. In 2004, the criteria for the award was extended to digital sales. The top-selling artist of all time is the Beatles with 170 million units sold.

Source: Recording Industry Association of America

- b. Write each number in scientific notation.
- c. How many copies of a CD have sold if it has gone platinum 13 times? W your answer in scientific notation and standard form.