Algebra 1 3.1 Identify linear equations, intercepts, and zeros Graph linear equations

integer
linear equation
standard form
constant
variable
x-intercept
y-intercept
whiteboards

GuidedPractice

3. DRIVING The table shows the function relating the distance to an amusement park in miles and the time in hours the Torres family has driven. Find the *x*- and *y*-intercepts. Describe what the intercepts mean in this situation.

s situation.	1	y-int		
	1	(0,248)	
			X ~1 m	+
_			X-14,	•
		1		

Time	Distance	
(11)	(III)	
0	248	
1	186	
2	124	
3	62	
4	0	

When @ x-intercept, what is the y-coordinate? When @ y-intercept, what is the x-coordinate?

How can I use what I know about intercepts? Example 4 Graph by Using Intercepts

Graph 2x + 4y = 16 by using the x- and y-intercepts.

X int. (8,0) $2 \times + 0 = 16$ $2 \times +0 = 16$ yin+ (0,4)

X + y int

Graph by making a table of values y = 2x + 1

$$y = 2x + 1$$

$$\frac{0=2\times 1}{\left(\frac{1}{2},0\right)^{\frac{1}{2}}=\frac{2\times}{2}}$$

Example 5 Graph by Making a Table

Graph $y = \frac{1}{3}x + 2$.

Graph each equation

5A.
$$2x - 69 = 2$$

$$3x + 2y = 6$$
(0,3)
(2,0)

$$2x - 5y = 10$$
 $(0, -2)$
 $(5, 0)$

You can only choose 3 for x

X = 1

X=constant y=constant

You will get -2 for y, no matter what.

50. y = -2

