Algebra 1 3.1 Identify linear equations, intercepts, and zeros Graph linear equations

integer
linear equation
standard form
constant
variable
x-intercept
y-intercept
whiteboards

Words

The standard form of a linear equation is Ax + By = C, where $A \ge 0$, A and B are not both zero, and A, B, and C are integers with a greatest common factor of 1.

 $\ln 3x + 2y = 8$, A = 3, B = 2, and C = 5. $\ln x = -7$, A = 1, B = 0, and C = -7. Examples

Skip (for now)

Example 1 Identify Linear Equations

Determine whether each equation is a linear equation. Write the equation in standard form.

a. y = 4 - 3x

lines

X
y
constant

3 ×

b. 6x - xy = 4

not linear

no expor.

no x.y.

no var. in denom

Standardized Test Example 2 Find Intercepts

Find the x- and y-intercepts of the line graphed at the right.

$$x-int=(20,0)$$
 $y-int=(0,30)$

$$2x-5=y$$

$$x^{2}+3x-7=5$$

$$3x-2xy+5=a$$

$$4+\frac{1}{2}x=y$$

$$4x+\frac{y}{3}=7$$

$$\frac{3}{x}+5=y$$

2. HEALTH Find the *x*- and *y*-intercepts of the graph.

1		
Draining a Pool		
Tim = (h)	Volume (gal)	(0,10,080)
	y	(0,088)
0	10,080	
2	8640	
6	5760	
10	2880	
12	1440	x-int (14,0)
14	0	0119
	0 2 6 10 12	0 10,080 2 8640 6 5760 10 2880 12 1440

GuidedPractice

3. DRIVING The table shows the function relating the distance to an amusement park in miles and the time in hours the Torres family has driven. Find the *x*- and *y*-intercepts. Describe what the intercepts mean in this situation.

situation.	V	y-in 6,24		
		V12+		
			(4,0) 1-x	n+
			10	

Time	Distance		
(11)	(m)		
0	248		
1	186		
2	124		
3	62		
4	0		

When @ x-intercept, what is the y-coordinate? When @ y-intercept, what is the x-coordinate?

How can I use what I know about intercepts? Example 4 Graph by Using Intercepts

Graph 2x + 4y = 16 by using the *x*- and *y*-intercepts.

Graph each equation by using the x- and y-intercepts.

4A.
$$-x + 2y = 3$$

4B.
$$y = -x - 5$$

whiteboards

Graph by making a table of values
y = 2x + 1

Example 5 Graph by Making a Table

Graph $y = \frac{1}{3}x + 2$.

Solve for y

GuidedPractice

Graph each equation

5A.
$$2x - y = 2$$

You can only choose 3 for x

5B.
$$x = 3$$

You will get -2 for y, no matter what.

50. y = -2

