Algebra 1 1.7

Determine whether a relation is a function.

every x has one partner

Find function values

relation

function

discrete

continuous

vetical line test VLT

cut & paste activ

## Every input has exactly one output!





| b. | Dom   | 1 | 3 | 5 | 1  |
|----|-------|---|---|---|----|
|    | Range | 4 | 2 | 4 | -4 |
|    | ð     |   |   |   |    |

## **Guided**Practice

**1.** {(2, 1), (3, -2), (3, 1), (2, -2)} (2, 2)

## Example 3 Equations as Functions

Determine whether -3x + y = 8 is a function.



• GuidedPractice Determine whether each relation is a function.





x=2





ord. pairs

Find Function Values Equations that are functions can be written in a form called **function notation**. For example, consider y = 3x - 8.

Equation 
$$y = 3x - 8$$

Function Notation 
$$f(x) = 3x - 8$$

In a function, x represents the elements of the domain, and f(x) represents the elements of the range. The graph of f(x) is the graph of the equation y = f(x). Suppose you want to find the value in the range that corresponds to the element 5 in the domain. This is written f(5) and is read f of f. The value f(5) is found by substituting 5 for x in the equation.

For f(x) = -4x + 7, find each value.

$$f(3) = -4.3 + 7$$

$$= -13 + 7$$

$$= -33$$

$$f(5) = -4.5 + 7 = -13$$

$$f(1) = -4.1 + 7$$

$$f(10) = -4(10) + 7$$
 $= -40 + 7$ 
 $= -33$ 

For 
$$f(x) = 2x - 3$$
, find each value.

$$f(-4) = 2(-4) - 3$$
  
 $f(-6) = 2(-6) - 3 = -11$ 

**4D.** f(-1) + f(2)