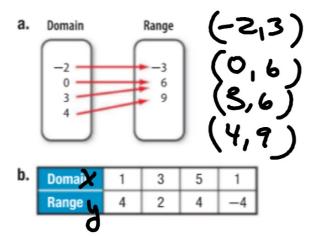

Algebra 1 1.7


Determine whether a relation is a function.

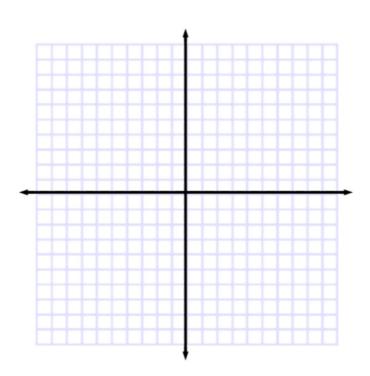
Find function values
relation
function
discrete
continuous
vertical line test

cut & paste activ

Every input has exactly one output!

-4

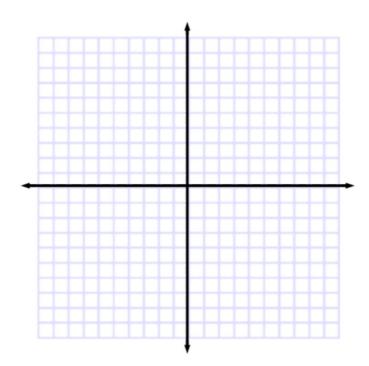
4


GuidedPractice

1. {(2, 1), (3, -2), (3, 1), (2, -2)}

Example 3 Equations as Functions

Determine whether -3x + y = 8 is a function.



• GuidedPractice Determine whether each relation is a function.

3A.
$$4x = 8$$

3B.
$$4x = y + 8$$

Table	Mapping	Equation	Graph
x y -2 1 0 -1 2 1	Domain Range -2 0 2	$f(x) = \frac{1}{2}x^2 - 1$	y y

2 Find Function Values Equations that are functions can be written in a form called function notation. For example, consider y = 3x - 8.

Equation y = 3x - 8 Function Notation f(x) = 3x - 8

In a function, x represents the elements of the domain, and f(x) represents the elements of the range. The graph of f(x) is the graph of the equation y = f(x). Suppose you want to find the value in the range that corresponds to the element 5 in the domain. This is written f(5) and is read f of f. The value f(5) is found by substituting 5 for x in the equation.

Example 4 Function Values

For f(x) = -4x + 7, find each value.

▶ GuidedPractice

For f(x) = 2x - 3, find each value.

4C.
$$f(-2)$$

4D.
$$f(-1) + f(2)$$