Algebra 1

5.2

*6th grade standard

Solve linear inequalities by using multiplication* Solve linear inequalities by using division*

★multiplication property of (in)equality
★division property of (in)equality

triangle puzzles (if time)

Mult by positive # 5>3 -2<0

Is it still true?

3.5<8.3

a.5>3.2

10>6

-2・3>-5・-2

-6 < 10

8>4 -2-2-2

But....Mult by negative #

5>3

-2<0

Is it still true?

What must happen to make it work?

P292
These examples demonstrate the Multiplication Property of Inequalities.

№ KeyConcept Multiplication Property of Inequalities		
Words	Symbols	Examples
Whoth sides of an inequality that is true are multiplied by a positive number, the resulting inequality is also true.	For any real numbers a and b and any positive real number c , if $a > b$, then $ac > bc$. And, if $a < b$, then $ac < bc$.	6 > 3.5 $6(2) > 3.5(2)$ $12 > 7$ and $2.1 < 5$ $2.1(0.5) < 5(0.5)$ $1.05 < 2.5$
by both sides of an inequality that is true are multiplied by a negative number, the direction of the inequality sign is reversed to make the resulting inequality also true.	For any real numbers a and b and any negative real number c , if $a > b$, then $ac < bc$. And, if $a < b$, then $ac > bc$.	7 > 4.5 $7(-3) < 4.5(-3)$ $-21 < -13.5$ and $3.1 < 5.2$ $3.1(-4) > 5.2(-4)$ $-12.4 > -20.8$

The DIGITS get bigger as you move away from zero in either direction.

BUT:

Move to the right, the values increase. Move to the left, the values decrease.

$$26\frac{1}{5}m \ge -3.5$$

$$m \ge -15$$

$$\frac{8}{3} \cdot \frac{3}{8}t < 5$$

$$\frac{8}{3} \cdot \frac{3}{3}t + \frac{8}{3} \cdot \frac{8}{3}$$

Example 2 Solve by Multiplying

Solve $-\frac{3}{7}r < 21$. Graph the solution on a number line.

$$\frac{-7}{3} \cdot \frac{3}{7} r < \frac{3}{24} \cdot \frac{-7}{3},$$

$$\frac{21}{31} r$$

$$|r> -49$$

whiteboards

2A.
$$-\frac{n}{6} \le 8$$
 2B. $-\frac{4}{3}p > -10$

$$-\frac{1}{6} \cdot -\frac{1}{6} \cdot n \le 8 \cdot \frac{3}{4} \cdot \frac{-4}{3}p > -10 \cdot -\frac{3}{4}$$

$$n \ge -48$$

$$p < \frac{15}{3}$$

Divide by positive 6>2 -40<10 ls it still true?

$$\frac{6}{2}$$
 $\frac{6}{2}$ $\frac{6}{2}$ $\frac{2}{-2}$ $\frac{6}{2}$ $\frac{2}{-3}$ $\frac{6}{-3}$ $\frac{2}{-3}$

Divide by negative

12>6

-4<20

Is it still true?

What do we need to do for it to work?

These examples demonstrate the **Division Property of Inequalities**.

-munitip	Symbols	Examples
If both sides of a true inequality are divided by a positive number, the resulting inequality is also true.	For any real numbers a and b and any positive real number a , if $a > b$, then $\frac{a}{c} > \frac{b}{c}$. And, if $a < b$, then $\frac{a}{c} < \frac{b}{c}$.	4.5 > 2.1 $1.5 < 5\frac{4.5}{3} > \frac{2.1}{3} and \frac{1.5}{0.5} < \frac{5}{0.5}1.5 > 0.7$ $3 < 10$
If both sides of a true inequality are divided by a negative number, the direction of the inequality sign is reversed to make the resulting inequality also true.	For any real numbers and b , and any negative real number c , if $a > b$, then $\frac{a}{c} < \frac{b}{c}$. And, if $a < b$, then $\frac{a}{c} < \frac{b}{c}$.	$\begin{array}{ccc} 6 > 2.4 & -1.8 < 3.6 \\ \frac{6}{-6} < \frac{2.4}{-6} & \text{and} & \frac{-1.8}{-9} < \frac{3.6}{-9} \\ -1 < -0.4 & 0.2 > -0.4 \end{array}$

Same same...

Example 3 Divide to Solve an Inequality

Solve each inequality. Graph the solution on a number line.

GuidedPractice

3A.
$$8p \le 58$$

3B.
$$-42 \ge 6r$$

3C.
$$-12h > 15$$

3D.
$$-\frac{1}{2}n \le 6$$

Real-World Example 1 Write and Solve an Inequality

SURVEYS Of the students surveyed at Madison High School, fewer than eighty-four said they have never purchased an item online. This is about one eighth of those surveyed. How many students were surveyed?