Algebra 1 8.8
Factor binomials that are the difference of squares
Use the difference of squares to solve equations
difference
factor
solve
whiteboards

Quiz 8.6-8.7

$$(x^{2}-49)$$
 $(x-7)(x+7)$
 $(x^{2}-8)$

KeyConcept Difference of Squares

Symbols

$$a^2 - b^2 = (a + b)(a - b)$$
 or $(a - b)(a + b)$

Examples

$$\underline{a^2} - \underline{b^2} = (\underline{a} + \underline{b})(\underline{a} - \underline{b}) \text{ or } (\underline{a} - \underline{b})(\underline{a} + \underline{b})$$

$$\underline{(x^2)} - (25) = (x + 5)(x - 5) \text{ or } (x - 5)(x + 5)$$

$$t^2 - 64 = (t+8)(t-8)$$
 or $(t-8)(t+8)$

Is the first thing something squared? Is the second thing something squared? Are they subtracted?

$$x^{2}-49$$
 $(x+7)(x-7)$
 $n^{2}+64$ $(x^{3}-36)$ $(x^{3}-36)$ $(x^{2}-16)$ $(x^{2}-16)$

Example 1 Factor Differences of Squares

Factor each polynomial.

a.
$$16h^2 - 9a^2$$

a.
$$16h^2 - 9a^2$$

 $(4h + 3a)(4h - 3a)$

Is the first thing something squared? Is the second thing something squared? Are they subtracted?

b.
$$121 - 4b^2$$
 $(1 + 2b)(11 - 2b)$

Always check for GCF first

GuidedPractice

1A.
$$81 - c^2$$

1B.
$$64g^2 - h^2$$

GCF?
10.
$$\frac{9x^3 - 4x}{x}$$

 $\times (9x^2 - 4)$
 $\times (3x + 2)(3x - 2)$
15-43 ods
 $\rho.518$

Can it be rearranged?

10.
$$-4y^3 + 9y$$
 $9y - 4y^3$
 $y(9 - 4y^2)$
 $y(3 - 2y)(3 + 2y)$

When is it finished? Check your answer...can anything be factored again? Watch out for DOS.

Example 2 Apply a Technique More than Once

Factor each polynomial.

a. $b^4 - 16$

esp. diff of squares... easy to overlook

b. $625 - x^4$

GuidedPractice

2A.
$$y^4 - 1$$

2B.
$$4a^4 - b^4$$

20.
$$81 - x^4$$

2D.
$$16y^4 - 1$$