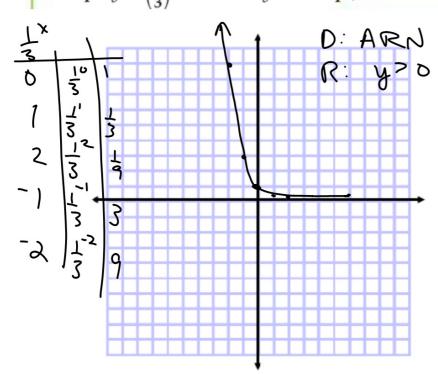

Algebra 1 7.5
Graph exponential functions
Identify exponential behavior

base exponent $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ y-intercept rate of change $3 = 3 \cdot 43$ linear exponential growth exponential decay $-5^2 = -1.5^2 = -2.5$

Activity: giant graphs


n= 2 y= 2 y= 3 x

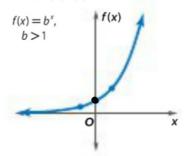
Each group choose an equation (cards)
Use a table of values to determine coordinates
Plot the coordinates on 1-inch grid paper

```
\frac{x}{-3}
\frac{y}{-3}
\frac{-2}{-1}
\frac{1}{2}
\frac{3}{3}
```

Gallery walk What do you notice? What do you wonder? Example 2 Graph with a > 0 and 0 < b < 10 < 6 < 1

Graph $y = \left(\frac{1}{3}\right)^x$. Find the *y*-intercept, and state the domain and range.

KeyConcept Graphs of Exponential Functions

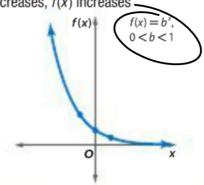

Exponential Growth Functions

Equation: $f(x) = ab^x (a > 0, b > 1)$

Domain, Range: all reals; all positive reals **Intercepts:** one *y*-intercept, no *x*-intercepts

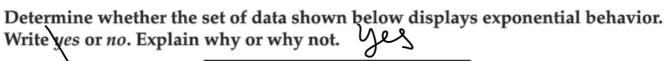
End behavior: as x increases, f(x) increases;

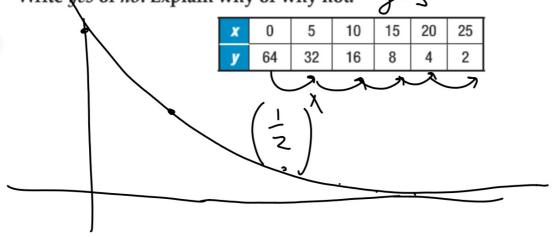
as x decreases, f(x) approaches 0


Exponential Decay Functions

Equation: $f(x) = ab^x$, a > 0, 0 < b < 1

Domain, Range: all reals; all positive reals **Intercepts:** one *y*-intercept, no *x*-intercepts


End behavior: as x increases, f(x) approaches 0;


as x decreases, f(x) increases -

Example 4 Identify Exponential Behavior

Is it a multiplying rule?

4. Determine whether the set of data shown below displays exponential behavior. Write *yes* or *no*. Explain why or why not.

X	0	3	6	9	12	15
у	12	16	20	24	28	32

no