Algebra 1 7.8
Use a recursive formula to list terms in a sequence
Write recursive formulas for arithmetic and geometric sequences

Write an explicit formula sequence arithmetic sequence common difference (d) geometric sequence common ratio (r)

**explicit formula recursive formula

whiteboards

 $a_1 =$ $n \ge 2$

$$\begin{array}{c}
-2, 10, -50... \\
y = -2(-5)
\end{array}$$

$$y = -2(-5)^{10}$$

$$y = -2(-5)^{10}$$

$$y = -3 \cdot r$$

$$y = -3 \cdot r$$

Find the first five terms of each sequence.

Write a recursive formula for each sequence

3. 1, 6, 11, 16, ...

$$a_i = 1$$

$$a_n = a_{n-1} + 5$$

To write an explicit formula: Which kind is it? (x or +)

What is the relationship? Put in first term and simplify

Previous chapter(s):
+ a_n=a_1 + (n-1)d

X a_n=a_1(r)^{(n-1)}

Can man ratio

4B. Write an explicit formula for
$$a_1 = -16$$
, $a_n = a_{n-1} - 7$, $n \ge 2$.

- 1) Write the first 3 or 4 terms
 - What is the rule?(template)
 - 3. Substitute & simplify

$$a_n=a_1 + (n-1)d$$

 $a_n=a_1(r)^{(n-1)}$

b. Write an explicit formula for $a_1 = 120$, $a_n = \underbrace{0.8a_{n-1}}_{}$

1 120
2 96
3 76.8
4 61.44

1. Write the first 3 of 2. What is the rule?
3. Substitute & simple A =
$$P(1+\frac{r}{n})$$

$$\alpha_n = \alpha_i(r)^n$$

- 1. Write the first 3 or 4 terms
- 2. What is the rule? (template)

$$A = P\left(1 + \frac{r}{n}\right)^{n}$$

$$a_n = a_1 + (n-1)d$$

For each recursive formula, write an explicit formula. For each explicit formula, write a recursive formula.

(yesterday)

6.
$$a_1 = 4$$
, $a_n = a_{n-1} + 16$, $n \ge 2$

7. $a_n = 5n + 8$

1. 4
2. $a_n = a_1 + (n-1)$
3. $a_n = 5n + 8$

2. $a_n = 5n + 8$

3. $a_n = 5n + 8$

3. $a_n = 5n + 8$

4. $a_n = 6n + 8$

4. $a_n = 6n + 8$

5. $a_n = 6n + 8$

6. $a_n = 6n + 8$

7. $a_n = 6n + 8$

8. $a_n = 6n$

$$a_n=a_1 + (n-1)d$$

 $a_n=a_1(r)^{(n-1)}$