Algebra 1 9.3

Apply transformations to quadratic functions

Apply dilations and reflections to quadratic functions

parent graph

transformation

translation SlideSreflection flipdilation enlarge/reduce $y = 1 \times 2 + 0 \times + 0$ $a = 1 \quad b = 0 \quad C = 0$

Are these the same shape?

The graph of $f(x) = x^2 + k$ is the graph of $f(x) = x^2$ translated vertically.

If k > 0, the graph of $f(x) = x^2$ is translated |k| units up.

If k < 0, the graph of $f(x) = x^2$ is translated |k| units **down**.

10.
$$h(x) = -5 + x^2$$
 (D. $f(x) = x^2 + 1$

$$f(x)$$

 $h(x) = x^{2} - 5$
 $f(x) = (x+3)^{2} + 5$

Notice the subtraction in the formula... (related to the distance formula...trust me)

A quadratic graph can be translated horizontally by subtracting an h term from x.

Remember the - in the formula? What did you subtract? in words:

Example 2 Horizontal Translations

a.
$$g(x) = (x-2)^2 + 0$$

b.
$$g(x) = (x+1)^2 + 3 \times 4 + 1$$

in words:

GuidedPractice

in words:

Example 3 Horizontal and Vertical Translations

Describe how the graph of each function is related to the graph of $f(x) = x^2$.

a.
$$g(x) = (x-3)^2 + 2$$

b.
$$g(x) = (x+3)^2 - 1$$

Parent graph (TOV)

Graph from parent graph:

