

Where does the graph cross the x-axis? What is true about the y-coordinate there?

"double root"

$$y = 2x^{2} - 6x + 3$$

$$x = \frac{6}{6 \cdot 2} = \frac{6}{4}$$

$$13x^{2} - 6x + 3$$

$$1.5 = \frac{2}{4 \cdot 5} - \frac{6}{4 \cdot 5} = \frac{1.5}{3}$$

$$3 = \frac{18 - 18 + 3}{3 \cdot 4 - 6.2 + 3} = \frac{3}{3}$$

$$3 = \frac{3 \cdot 4 - 6.2 + 3}{3 - 13 + 3} = \frac{3}{3}$$

GuidedPractice Solve each equation by graphing.

Does it open up or down? Function form (y=) x=-b/2a etc. Table of values

Answer the question Solve: where does it cross x-axis? hint: y-coordinate there is 0

Example 2 Double Root

Solve $x^2 - 6x = -9$ by graphing.

Change to =0 (if necessary)
Open up or down?
Use function form (y=) for graphing
Answer the question

GuidedPractice

Solve each equation by graphing.

2A.
$$x^2 + 25 = 10x$$

 $-10 \times 10 \times$

2B.
$$x^2 = -8x - 16$$

Rearrange
(if necessary)
Change to function
form

Example 3 No Real Roots

Solve $2x^2 - 3x + 5 = 0$ by graphing.

complex number

Solve each equation by graphing.

3A.
$$-x^2 - 3x = 5$$

3B.
$$-2x^2 - 8 = 6x$$

What if the answer isn't an integer? What is it between? $y= x^2 +3x - 1$

Example 4 Approximate Roots with a Table

Solve $x^2 + 6x + 6 = 0$ by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

if not integers... what is it between? VS nearest tenth?

between 9.2 11-330

GuidedPractice

4. Solve $2x^2 + 6x - 3 = 0$ by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

What is it between? vs nearest tenth?