Geometry 13.2 Use permutations with probability Use combinations with probability

Words The factorial of a positive integer n, written n!, is the product of the positive integers

less than or equal to n.

Symbols $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$, where 0! = 1

6 order matter Per mutation How many ways can ABC stand in a row?

24 ABCD ADCB 4.3 2 1 ACBD ACCB = 24

Example 1 Probability and Permutations of *n* Objects

SPORTS Chanise and Renee are members of the lacrosse team. If the 20 girls on the team are each assigned a jersey number from 1 to 20 at random, what is the probability that Chanise's jersey number will be 1 and Renee's will be 2?

GuidedPractice

2. A student identification card consists of 4 digits selected from 10 possible digits from 0 to 9. Digits cannot be repeated.

A. How many possible identification numbers are there? 76 9 8 7 = 5046

B. Find the probability that a randomly generated card has the exact number 4213.

5040

4213

 $P = \frac{S}{P}$

probability: #success/# possible

Group photo: Choose 4 from a group of 6

= 15

Combination-order irrelevant 6 Cy FCP

Example 2 Probability and $_nP_r$

A class is divided into teams each made up of 15 students. Each team is directed to select team members to be officers. If Sam, Valencia, and Deshane are on a team, and the positions are decided at random, what is the probability that they are selected as president, vice president, and secretary, respectively?

Permutations with repetition

CAT	CAT	ACT	TAC	=6
ВОО	CTA	ATC	TCA	
62	B00 B00	0 B o	00B	= 3
dist	inquishable			

KeyConcept Permutations with Repetition

The number of distinguishable permutations of n objects in which one object is repeated r_1 times, another is repeated r_2 times, and so on, is $\frac{n!}{r_1! \cdot r_2! \cdot \ldots \cdot r_k!}.$

$$\frac{n!}{r_1! \cdot r_2! \cdot \ldots \cdot r_k!}$$

Example 3 Probability and Permutations with Repetition

GAME SHOW On a game show, you are given the following letters and asked to unscramble them to name a U.S. river. If you selected a permutation of these letters at random, what is the probability that they would spell the correct answer of MISSISSIPPI?

How many are there? One will be correct.

1 inear 5 4 3 2 1 120

cirenlar 5.4.3.2.1 4.3.2.1

Is it a different arrangement? 1/5*5*4*3*2*1 Why?

13.2 5-19.alq